\qquad

Vehicle Make \qquad Vehicle Model \qquad Vehicle Year \qquad
This vehicle will go from zero to sixty in \qquad seconds.

Source for this information \qquad
Convert 60 mph (miles per hour) to m / s (meters per second). There are 1609 meters for every 1 mile. You may use an on-line converter to check your answer but you need to show your work below.
$60 \mathrm{mph}=$ \qquad m / s

Now find the acceleration of your vehicle in $\mathrm{m} / \mathrm{s}^{2}$. Show your work below. Be sure to verify your answer with me before continuing.
$\mathrm{V}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{f}}=$ \qquad m / s
$t=$ \qquad s
$\mathrm{a}=$?

What distance will your vehicle travel as it goes from zero to sixty? Find the distance in meters.
$\mathrm{d}=$?

Convert 20 mph (miles per hour) to m / s (meters per second). There are 1609 meters for every 1 mile. You may use an on-line converter to check your answer but you need to show your work below.
$20 \mathrm{mph}=$ \qquad m / s

Fill in the information below and use it to find the time it will take for your vehicle to reach this speed. Show your work.
$\mathrm{V}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{f}}=\ldots \quad \mathrm{m} / \mathrm{s}(20 \mathrm{mph})$
$\mathrm{a}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{t}=$?

What distance will your vehicle travel as it goes from zero to 20 mph ? Find the distance in meters.
$\mathrm{d}=$?

Convert 40 mph (miles per hour) to m / s (meters per second). There are 1609 meters for every 1 mile. You may use an on-line converter to check your answer but you need to show your work below.
$40 \mathrm{mph}=$ \qquad m / s

Fill in the information below and use it to find the time it will take for your vehicle to reach this speed. Show your work.
$\mathrm{V}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{f}}=$ \qquad $\mathrm{m} / \mathrm{s}(40 \mathrm{mph})$
$\mathrm{a}=$ \qquad $\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{t}=$?

What distance will your vehicle travel as it goes from zero to 40 mph ? Find the distance in meters.
$\mathrm{d}=$?

Confirm your calculations and results with me. Once they have been confirmed, fill in the chart below.

Time (seconds)	Speed (m/s) ${ }^{\text {mph are also listed }}$	Distance (m)
0	0	
	$8.9 \mathrm{~m} / \mathrm{s}{ }^{*} 20 \mathrm{mph}$	
	$17.9 \mathrm{~m} / \mathrm{s}^{*} 40 \mathrm{mph}$	
	$26.8 \mathrm{~m} / \mathrm{s}^{*} 60 \mathrm{mph}$	

Complete a speed vs time graph. Graph the speed in m / s.

1) Show the calculation used to get the slope of your trendline.
2) The slope of the line represents a physics term. What is the one word physics term represented by the slope of the graph?
3) Give the equation for your trendline.

Complete a distance vs time graph. Graph the distance in meters.

