Name Date
$38 \quad$ Kinematics on a Field at Monroe Township High School

Purpose: To calculate the acceleration and velocities of a person as they move across a field.
Materials: iPads equipped with stopwatches, a marked field
Procedure: A person starts from rest. In phase 1, they accelerate until they reach a constant speed. In phase 2, they move at that constant speed. In phase 3, they slow down and come to a rest.

The group decides the distance for each phase. One person moves across the field. Other members of the group time each of the phases. To clarify, a person will time phase 1, another person will time phase 2 and a third person will time phase 3.

Data:

Phase 2
distance \qquad
time \qquad

Phase 3
distance \qquad
time

Diagram: Draw a diagram of the field where you collected the data. Indicate the location and distances for each of the phases.

Calculations:

Phase 1
The conversion of distance to meters, work shown below

Phase 1 continued
The calculation for acceleration, work shown below

$$
\begin{aligned}
& \mathrm{d}=\ldots \mathrm{m} \\
& \mathrm{t}=\ldots \mathrm{s} \\
& \mathrm{v}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{a}=?
\end{aligned}
$$

The calculation for final speed, work shown below

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s} \\
& \mathrm{t}=\ldots \mathrm{s} \\
& \mathrm{a}=\ldots \mathrm{m} / \mathrm{s}^{2} \\
& \mathrm{~V}_{\mathrm{f}}=\ldots \mathrm{m} / \mathrm{s}
\end{aligned}
$$

Phase 2
The conversion of distance to meters, work shown below

The calculation for constant speed, work shown below
\qquad
$t=$ \qquad s
$\mathrm{v}=$?

Phase 3
The conversion of distance to meters, work shown below

The calculation for acceleration, work shown below
$\mathrm{v}_{\mathrm{i}}=$ \qquad m / s
$t=$ \qquad s
$\mathrm{v}_{\mathrm{f}}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=$?
Questions: [Complete Conclusion on following page.]

1) The final speed in phase 1 should be the same as the constant speed for phase 2 . Explain why this is true.
2) Was your final speed in phase 1 the same as your constant speed for phase 2? If they were not the same, offer an explanation.

Conclusion:

