67 Newton's $2^{\text {nd }}$ Law Practice $F=m a$

1) How much net force would be needed to cause a 10 kg mass to accelerate at $3 \mathrm{~m} / \mathrm{s}^{2}$?
2) How much net force would be needed to cause a 15 kg mass to accelerate at $7 \mathrm{~m} / \mathrm{s}^{2}$?
3) A 100 kg mass accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$. What net force was used?
4) A 40 N net force is applied to a 5 kg object. What is its acceleration?
5) A 70 N net force is applied to a 20 kg object. What is its acceleration?
6) A 90 N net force is applied to a 2.5 kg object. What is its acceleration?
7) If a 50 N force causes an object to accelerate at $2 \mathrm{~m} / \mathrm{s}^{2}$, what is the object's mass?
8) If a 75 N force causes an object to accelerate at $5 \mathrm{~m} / \mathrm{s}^{2}$, what is the object's mass?
9) If a 10 N force causes an object to accelerate at $50 \mathrm{~m} / \mathrm{s}^{2}$, what is the object's mass?
10) A 100 N force is applied to an object and a 20 N force of friction works against it. If the object has a mass of 5 kg , what is its acceleration?
11) A 300 N force is applied to an object and a 70 N force of friction works against it. If the object has a mass of 20 kg , what is its acceleration?
12) An 80 N force is applied to an object and a 15 N force of friction works against it. If the object has a mass of 10 kg , what is its acceleration?
13) A 90 N force is applied to an object and a 30 N force of friction works against it. If the object accelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$, what is its mass?
14) A 120 N force is applied to an object and a 40 N force of friction works against it. If the object accelerates at $15 \mathrm{~m} / \mathrm{s}^{2}$, what is its mass?
15) A 5 N force is applied to an object and a 2 N force of friction works against it. If the object accelerates at $0.02 \mathrm{~m} / \mathrm{s}^{2}$, what is its mass?

Answers: 1) 30 N 2) $105 \mathrm{~N} \mathrm{3)} 1000 \mathrm{~N}$ 4) $8 \mathrm{~m} / \mathrm{s}^{2}$ 5) $3.5 \mathrm{~m} / \mathrm{s}^{2}$ 6) $\left.\left.36 \mathrm{~m} / \mathrm{s}^{2} 7\right) 25 \mathrm{~kg} 8\right) 15 \mathrm{~kg}$ 9) $\left.0.2 \mathrm{~kg} \mathrm{10)} 16 \mathrm{~m} / \mathrm{s}^{2} 11\right) 11.5 \mathrm{~m} / \mathrm{s}^{2}$ 12) $\left.\left.6.5 \mathrm{~m} / \mathrm{s}^{2} 13\right) 12 \mathrm{~kg} \mathrm{14)} 5.3 \mathrm{~kg} 15\right) 150 \mathrm{~kg}$

