\qquad

Momentum and Impulse Practice Problems $\mathrm{mom}=\mathrm{mv}$ $\mathrm{Ft}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}$

1) A 700 kg car is moving at $30 \mathrm{~m} / \mathrm{s}$. What is its momentum?
2) If the momentum of a 20 kg toy boat is $150 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$, what is the speed of the toy boat?
3) If the momentum of an object moving at $30 \mathrm{~m} / \mathrm{s}$ is $750 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$, what is the mass of the object?
4) A 3 kg soccer ball is accelerated from rest to a speed of $15 \mathrm{~m} / \mathrm{s}$ in a time of 0.40 s . What was the size of the force that caused this change in momentum?
5) A 1500 kg car applies its brakes for 3 s and slows from $4 \mathrm{~m} / \mathrm{s}$ to a stop. What was the force applied by the brakes?

$$
\operatorname{mom}=\mathrm{mv} \quad \mathrm{Ft}=\mathrm{mv}_{\mathrm{f}}-\mathrm{mv}_{\mathrm{i}}
$$

6) The ion thrusters on a space ship provide 4000 N of force for 15 s . If the spaceship has a mass of 15000 kg and starts at rest, what will its final velocity be?
7) A large model plane had a net force of 300 N act on it for 3 s . Its velocity changed from $15 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$. What was the mass of the model plane?
8) A net force of 10 N acted on a 25 kg object moving at $15 \mathrm{~m} / \mathrm{s}$. The new speed of the object was $17 \mathrm{~m} / \mathrm{s}$. How much time did this take?
9) Assume a 1000 kg car moving at $30 \mathrm{~m} / \mathrm{s}$ must come to a stop within a distance of 15 m . What force must the brakes supply?
