Name SOLVTONS

Date

Review Problems For Test 2 MP 1

$$v_i = v_i + at$$

$$v_f = v_i + at$$
 $d = v_i t + (1/2)at^2$

1) A car is travelling at a constant speed of 70 m/s. How many hours will it take for the car to travel 2500 kilometers? There are 1000 m for every kilometer.

35714s x 1 hour 3600s

2) A train is initially moving at 45 m/s. It accelerates at a rate of (-) 1.2 m/s^2 for 10 s. What is its new speed?

$$V_{i} = 45 \text{ m/s}$$

$$Q = (-1)^{2} \text{ m/s}^{2}$$

$$V_{f} = 45 + (-1.2)(10)$$

What was the initial speed of the train in miles per hour (mph)?

$$\frac{162000}{1609} = 101 \text{ mph}$$

3) A pumpkin is dropped off the roof of a building that is 140 m tall. How long will it take to

3) A pumpkin is dropped off the roof of a statung land?

$$V(= 0^{m}/s)$$

$$V(= 0^{$$

4) An object starts at rest. It travels 300 m in 1 minute and 12 s. What was its acceleration

5) A race car accelerates at $2.5\ m/s^2$ for $6.0\ s$. Its new speed is $32\ m/s$. What was its initial

speed?
$$a = 2.5 \text{ m/s}^2$$
 $t = 6s$
 $V_F = 32 \text{ m/s}$
 $32 = V_i + (2.5)(6)$
 $V_F = 32 \text{ m/s}$
 $32 = V_i + 15$
 $V_i = ?$
 $32 - 15 = V_i = 17 \text{ m/s}$

What distance did it travel?

What distance did it travel?
$$d = v + d = (17+32)6$$

$$d = (17)(6) + \frac{1}{2}(2.5)(6)^{2}$$

$$d = (24.5)(6)$$

$$d = (17)(6) + \frac{1}{2}(2.5)(6)^{2}$$

$$d = (17)(6) + \frac{1}{2}(2.5)(6)$$

$$d = (17)(6) +$$

6) An object had an average speed of 124 m/s. Its initial speed was 40 m/s. What was its final speed?

7) A person is 40 m above a point where a truck will soon be. The person would like to drop a package onto the truck. If the truck is 120 m away and moving at 15 m/s, how long should the person wait before dropping the package? Show all of your work for credit. Use one decimal point for these calculations.

DROPPING TIME

$$d = 40m$$
 $V = 15m/s$
 $d = 9.8m/s^2$
 $d = 9.8m/s$
 $d = 9.8m/$

Answers: 1) 9.9 hours 2) 33 m/s 101 mph 3) 5.3 s 4) 0.116 m/s² 5) 17 m/s 147 m 6) 208 m/s 7) 5.1 s