Name	501	_U7	7	01	15
1 valito				- , -	40

Date

Newton's 2nd Law Practice

1) How much net force would be needed to cause a 10 kg mass to accelerate at 3 m/s²?

$$a = 3n/s^2$$
 $F = (10)(3) = 30N$

2) How much net force would be needed to cause a 15 kg mass to accelerate at 7 m/s²?

$$m = 15 \text{Kg}$$
 $F = ma$
 $a = 7 \text{m/s}^2$ $F = (15)(7) = [105 \text{N}]$

3) A 100 kg mass accelerates at 10 m/s². What net force was used?

$$m = 100 \text{Kg}$$
 $F = ma$
 $a = 10 \text{M/s}^2$ $F = (100)(10) = 1000 \text{M/s} = 1 \times 10^3 \text{M}$

4) A 40 N net force is applied to a 5 kg object. What is its acceleration?

5) A 70 N net force is applied to a 20 kg object. What is its acceleration?

$$q = 7$$

Q = 7 $70/20 = Q = \boxed{3.5^{1}/5^{2}}$ 6) A 90 N net force is applied to a 2.5 kg object. What is its acceleration?

$$90=2.5a$$
 $90/2.5=a=[36m]5^2$

7) If a 50 N force causes an object to accelerate at 2 m/s², what is the object's mass?

$$50=m(2)$$

 $50/2=m=[25Kg]$

8) If a 75 N force causes an object to accelerate at 5 m/s², what is the object's mass?

9) If a 10 N force causes an object to accelerate at 50 m/s², what is the object's mass?

$$a = 50 \text{ m/s}^2$$
 $[0 = \text{m(so)}]$

10) A 100 N force is applied to an object and a 20 N force of friction works against it. If the object has a mass of 5 kg, what is its acceleration?

F = NET FONCE = APPLIED - FMCTON

F=ma

11) A 300 N force is applied to an object and a 70 N force of friction works against it. If the object has a mass of 20 kg, what is its acceleration?

F = NET FORCE = APPLIED - FMICTION

F=ma

$$\frac{230}{20} = a = 11.5 \frac{M}{5} 2$$

12) An 80 N force is applied to an object and a 15 N force of friction works against it. If the object has a mass of 10 kg, what is its acceleration? F=ma

F = APPLIED - FULTION

65=104

13) A 90 N force is applied to an object and a 30 N force of friction works against it. If the object accelerates at 5 m/s², what is its mass? E=ma

F = APPLIED - FMCTION

14) A 120 N force is applied to an object and a 40 N force of friction works against it. If the object accelerates at 15 m/s², what is its mass?

F = APPLIED - FMICTION

15) A 5 N force is applied to an object and a 2 N force of friction works against it. If the object accelerates at 0.02 m/s², what is its mass?

F=APPLIED-FMCTION

Answers: 1) 30 N 2) 105 N 3) 1000 N 4) 8 m/s² 5) 3.5 m/s² 6) 36 m/s² 7) 25 kg 8) 15 kg 9) 0.2 kg 10) 16 m/s² 11) 11.5 m/s² 12) 6.5 m/s² 13) 12 kg 14) 5.3 kg 15) 150 kg