\qquad
$92 \quad$ Universal Gravitation and More
$\mathrm{w}=\mathrm{mg} \quad \mathrm{F}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
$\mathrm{G}=6.67 \times 10^{-11} \quad$ mass of the earth $=5.98 \times 10^{24} \mathrm{~kg} \quad$ radius of the earth $=6.38 \times 10^{6} \mathrm{~m}$

1) A 70 kg mass is 20 m from a 50 kg mass. What is the gravitational attraction between them?
2) Mars is $2.3 \times 10^{11} \mathrm{~m}$ from the sun. Its mass is $6.4 \times 10^{23} \mathrm{~kg}$. The sun's mass is $1.99 \times 10^{30} \mathrm{~kg}$. What is the gravitational attraction between Mars and the Sun?
3) The radius of Neptune is $2.27 \times 10^{7} \mathrm{~m}$. Its mass is $1.03 \times 10^{26} \mathrm{~kg}$. What is the gravitational force or weight felt by a 70 kg person on Neptune?
4) What is the acceleration due to gravity on Neptune? Hint:use information from problem 3
5) What is the orbital radius of a satellite of earth, when the satellite is $475,000 \mathrm{~m}$ above the earth's surface?
6) A 500 N force is applied to a 70 kg object. If its acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$, what was u ?
