Universal Gravitation and More w=mg F=Gm₁m₂/r² mass of the earth = $5.98 \times 10^{24} \text{ kg}$ radius of the earth = $6.38 \times 10^4 \text{ m}$ 1) A 70 kg mass is 20 m from a 50 kg mass. What is the gravitational attraction between them? 2) Mars is 2.3×10^{11} m from the sun. Its mass is 6.4×10^{23} kg. The sun's mass is 1.99×10^{30} kg. What is the gravitational attraction between Mars and the Sun? $$M_2 = 1.99 \times 10^{30} \text{ Ks}$$ $F = \frac{(6.67 \times 10^{-11})(6.4 \times 10^{23})(1.99 \times 10^{30})}{(2.3 \times 10^{-11})^d}$ $$F = ?$$ 3) The radius of Neptune is 2.27×10^7 m. Its mass is 1.03×10^{26} kg. What is the gravitational force or weight felt by a 70 kg person on Neptune? $$F = \frac{(6.67 \times 10^{-11})(1.03 \times 10^{26})(70)}{(3.37 \times 10^{7})^{2}}$$ Answers: 1) 5.84 x 10⁻¹⁰ N 2) 1.61 x 10²¹ N 3) 933.27 N 4) What is the acceleration due to gravity on Neptune? Hint:use information from problem 4 4) What is the acceleration due to gravity on Neptune? $$M = MS$$ $$9 = 7$$ $$W = MS$$ $$9 = 33.27 = 70 g$$ $$M = 70 KS$$ $$9 5) What is the orbital radius of a satellite of earth, when the satellite is 475,000 m above the earth's surface? 6) A 500 N force is applied to a 70 kg object. If its acceleration is 5 m/s², what was u? 6) A 500 N force is applied to a 70 kg object. If its acceleration is 5 m/s², what was u? APPLIED = 500 N $$M = 70 \text{ Kg}$$ $Q = 5 \text{ m/s}^2$ $Q = 7 Answers: 4) 13.33 m/s² 5) 78.4 cm 6) 0.22