

Universal Gravitation and More

w=mg

F=Gm₁m₂/r²

mass of the earth = $5.98 \times 10^{24} \text{ kg}$

radius of the earth = $6.38 \times 10^4 \text{ m}$

1) A 70 kg mass is 20 m from a 50 kg mass. What is the gravitational attraction between them?

2) Mars is 2.3×10^{11} m from the sun. Its mass is 6.4×10^{23} kg. The sun's mass is 1.99×10^{30} kg. What is the gravitational attraction between Mars and the Sun?

$$M_2 = 1.99 \times 10^{30} \text{ Ks}$$
 $F = \frac{(6.67 \times 10^{-11})(6.4 \times 10^{23})(1.99 \times 10^{30})}{(2.3 \times 10^{-11})^d}$

$$F = ?$$

3) The radius of Neptune is 2.27×10^7 m. Its mass is 1.03×10^{26} kg. What is the gravitational force or weight felt by a 70 kg person on Neptune?

$$F = \frac{(6.67 \times 10^{-11})(1.03 \times 10^{26})(70)}{(3.37 \times 10^{7})^{2}}$$

Answers: 1) 5.84 x 10⁻¹⁰ N 2) 1.61 x 10²¹ N 3) 933.27 N

4) What is the acceleration due to gravity on Neptune? Hint:use information from problem 4

4) What is the acceleration due to gravity on Neptune?
$$M = MS$$

$$9 = 7$$

$$W = MS$$

$$9 = 33.27 = 70 g$$

$$M = 70 KS$$

$$9 = 70 KS$$

5) What is the orbital radius of a satellite of earth, when the satellite is 475,000 m above the earth's surface?

6) A 500 N force is applied to a 70 kg object. If its acceleration is 5 m/s², what was u?

6) A 500 N force is applied to a 70 kg object. If its acceleration is 5 m/s², what was u?

APPLIED = 500 N

$$M = 70 \text{ Kg}$$
 $Q = 5 \text{ m/s}^2$
 $Q = 7 \text{ m/s}^2$

Answers: 4) 13.33 m/s² 5) 78.4 cm 6) 0.22